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ABSTRACT

ESTIMATING BORDER OWNERSHIP USING ITERATIVE VECTOR
VOTING AND CONDITIONAL RANDOM FIELDS

Özkan, Bu§ra

M.S., Department of Computer Engineering

Supervisor : Assist. Prof. Dr. Sinan Kalkan

Co-Supervisor : Prof. Dr. Fato³ T. Yarman Vural

February 2014, 70 pages

Border ownership is the information that signi�es which side of a border owns
the border. Estimating this information has recently become very popular for
perceptual organization as it allows recti�cation of ambigious visual information.
It is applied on many computer vision problems such as object detection, depth
perception and optical �ow. In this thesis, two di�erent approaches are followed
to solve the border ownership problem. For the supervised approach, conditional
random �elds are used as it is the most appropriate method for modelling con-
textual relations between semantic classes. Tensor voting is the inspire of our
second algorithm called Iterative Vector Voting, as it allows modelling di�erent
information sources and their interactions. It is an unsupervised voting frame-
work, which is proper for the use of Gestalt visual cues. Experiments show that
both two models show signi�cant contribution to the border ownerhip problem
with respect to the successful results gathered on our own large-scale dataset.

Keywords: Border Ownership, Figure-Ground Segregation, Conditional Ran-
dom Field, Graphical Models, Tensor Voting
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ÖZ

Y�NELEMEL� VEKTÖR OYLAMA VE KO�ULLU RASTGELE ALAN
KULLANARAK SINIR SAH�PL��� B�LG�S�N�N ELDE ED�LMES�

Özkan, Bu§ra

Yüksek Lisans, Bilgisayar Mühendisli§i Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Sinan Kalkan

Ortak Tez Yöneticisi : Prof. Dr. Fato³ T. Yarman Vural

�ubat 2014 , 70 sayfa

S�n�r sahipli§i, görüntü üzerindeki kenarlar�n sahibi olan alanlar� belirlemekte
kullan�lan görsel bir bilgidir. Bu bilginin hesaplanmas�, mu§lak görsel bilginin
tamamlanmas�nda oynad�§� rol sebebiyle son zamanlarda büyük önem kazan-
m�³t�r. Bu bilgi, obje tan�ma, derinlik alg�lama ve optik ak�³ gibi bir çok önemli
bilgisayarla görme probleminde kullan�lmaktad�r. Bu tez çal�³mas�nda, s�n�r sa-
hipli§i problemi için ideal modeli geli³tirmek amac�yla iki ayr� yakla³�m ser-
gilenmi³tir. Denetimli yakla³�mda, anlamsal s�n��ar aras�ndaki içeriksel ili³kileri
modellemede en uygun aday olmas� sebebiyle Ko³ullu Rastgele Alan kullan�lm�³-
t�r. �kinci yöntemimiz, farkl� bilgi kaynaklar�n� ili³kileriyle modelleme amac�yla
kullan�lan Tensör Oylama yöntemi ilham al�narak geli³tirilen Yinelemeli Vektör
Oylama yöntemidir. Bu yöntem, denetimsiz bir oylama yöntemi olup, Gestalt
görsel ipuçlar�n� kullanmaya uygun bir yöntemdir. Yap�lan deneyler, geli³tirdi-
§imiz geni³ veri seti üzerinde ald�§�m�z sonuçlar� do§rultusunda, iki modelin de
s�n�r sahipli§i problemine önemli katk�larda bulundu§unu göstermektedir.

Anahtar Kelimeler: S�n�r Sahipli§i, Figür-Zemin Ayr�m�, Ko³ullu Rastgele Alan,

Gra�ksel Modeller, Tensör Oylama
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CHAPTER 1

INTRODUCTION

Images are simply two-dimensional projections of the real world. Such a trans-

formation causes loss of visual data, since objects and their backgrounds are

represented as regions and their boundaries. Besides, low-textured homogeneous

areas are not easy to process in correspondence-based vision tasks (such as opti-

cal �ow, stereo, structure from motion) as they do not have any distinguishable

visual structure. In other words, these types of regions are not able to create any

change on the receptive �elds. This leads to ambiguous and incomplete visual

data. Human vision system (HVS) and arti�cial vision methodologies have to

deal with such de�ciency and perceive 3D information from 2D data.

In order to resolve this vision problem, reliable visual information available at the

borders are used by "�lling-in" mechanisms, by di�using the information into

the regions from borders. Such a mechanism needs the information of owner

regions of borders to be utilized, i.e., "Border Ownership" (BO) information.

In the Figure 1.1, a basic example of border ownership is shown: the gray

pentagon is the owner of the red border between two pentagons as it is on the

front, and thus causes occlusion.
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Figure 1.1: Border ownership example
Source: [5]

1.1 Contributions

This study proposes two new methods with promising results to the BO litera-

ture: a graphical model using conditional random �elds (CRF) and a pixel-based

voting algorithm called Iterative Vector Voting (IVV). Both methods utilize

Gestalt cues such as size, convexity, entropy, contrast, lower-region and T & L

junctions, as suggested by existing psychological, physiological and experimental

studies [19, 35, 36, 45].

In the �rst part of the thesis, a supervised approach has been followed for which

training is a must. Border ownership problem is de�ned as a two-node CRF

graphical model, where nodes represent �gure and ground. Their contextual

integrity takes role on the decision of BO. The edge between these nodes is

de�ned as the border, located between �gure and ground. Across the border,

cue values are calculated and used as features of CRF model. Utilizing trained

graphical model, BO labels are estimated for each border.

The second method for estimating BO is called IVV. It adapts the voting ap-

proach of Tensor Voting (TV), and shows the same characteristic with TV. It

is a non-iterative, fast unsupervised algorithm. IVV algorithm brie�y works as

follows: Initial BO labels are extracted for each border pixel using Gestalt rules

of same visual cues. These rules decide BO discretely, e.g. "the region of higher

entropy owns the border". Then, most salient features are extracted through

voting and used for �nal labeling.
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TV is adopted while developing IVV for its convenience to the BO problem: It

provides di�erent data types the ability to communicate and propagate their

information to each other. Besides, its basic formalism has been extended to

solve various vision problems such as stereo [22], optical �ow [33], motion seg-

mentation [25] and �ow visualization [21]. Thus, IVV can be considered as an

extended version of TV, applied on the BO problem. Main di�erences of these

two methods are:

• Representation: IVV uses vector instead of tensor, as it requires less

information to keep.

• Voting: In TV, there exist two types of voting, which are sparse and

dense. IVV does not need dense voting as the votes located on borders

are only needed. Besides, voting procedure is applied multiple times itera-

tively, with respect to BO propagation. Voting scale of IVV is also smaller

than TV to keep votes same after these iterations.

1.2 Outline of the Thesis

The thesis is organized as follows:

• Background
All essential background information about BO problem, graphical models,

TV, visual cues of Gestalt Psychology and brief information about existing

datasets are provided.

• Related Work

Current literature about the BO problem is described in details.

• Methodology

Two models developed for the BO problem, CRF and IVV models, are

explained.
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• Experiments
Experimental results are presented and compared with the current BO

literature.

• Conclusion and Future Work

All thesis work is discussed, essential deductions are made for the future

work.

4



CHAPTER 2

BACKGROUND

In this chapter, background information on the BO problem is presented in four

sections. First, a formal de�nition of BO is provided with the purpose of use and

its importance for vision. Following this section, Tensor Voting and Conditional

Random Field algorithms, which are used to develop a BO model, are presented

in second and third sections. Finally in the last section, existing image datasets

are discussed brie�y with their advantages and disadvantages.

2.1 Border Ownership Problem

Border ownership is a vision problem of identifying which borders belong to

which regions in an image. The resulting information, in which border-region

relationships are de�ned, is important for both HVS and computer vision. It

is being used in many vision problems such as �gure-ground segregation, depth

perception, object recognition and optical �ow.

The Gestalt cue of "border" is a result of visual occlusion: objects closer mostly

occlude the complete view of other objects behind. This situation creates con-

tours, belonging to the closer object as they are responsible for the occlusion.

They carry important visual information, thus they can be considered as low-

level image features which separate regions in an image.

Vision, due to its nature, needs to overcome the loss of visual information as

the images are just two-dimensional (2-D) instances of three-dimensional (3-

D) real world. Perception begins at the retina with cluttered 2D visual data.

5



According to Gestalt psychologists, this data is regulated through the process

of �gure-ground (FG) organization. FG organization can be examined under

two processes: perceptual grouping and FG segregation, which complete each

other in a contrary way. Perceptual grouping states that low-level, primitive

visual pieces of similar characteristics are grouped together by HVS to extract

high-level, semantic structures. On the other hand, FG segregation states that

the �gure is perceived to stand out from the background, being bounded by a

closed contour, behind which the background appears to continue. These two

alternative ways in which two abutting regions could be organized into �gure

and background cannot occur together in our conscious perception. This phe-

nomenon is nicely illustrated as the famous Rubin's vase in Figure 2.1. Rubin's

vase can be perceived either as two black faces looking at each other, in front of

a white background, or as a white vase on a black background. In the case of

a FG reversal one line can have two shapes. The shape of the contour formed

depends on which side of the line is regarded as part of the �gure. This is im-

portant, because the visual system represents or encodes objects primarily in

terms of their borders. Moreover, elements which are close to one another, or

alike, or homogeneous in certain respects tend to be grouped together. This is

called perceptual grouping. The sudden reversal perceived may be due to sub-

ject's shift of attention on the shape of the contour. The observer's perceptual

set and individual interests can also bias the situation. Biasing the shapes or

contours can make one interpretation stronger than the other one.

Figure 2.1: Rubin's vase
Source: [2]

Some properties of FG relationship:

• Figures hold more memorable association than the ground.

6



• Figures are located in front of the ground.

• The ground is assumed to be composed of uniform material and seems to

extend behind the �gure.

• The contour separating the �gure from background belongs to the �gure.

Both arti�cial and biological vision systems need to deal with insu�cient visual

information. As an example to this situation for HVS, it is known that homo-

geneous or weakly-textured image regions are not able to excite the perception

�elds of neurons, thus they can not the stimulate visual cortex [10]. Although

such regions do not consist of any distinguishable structure, human visual sys-

tem is able to recognize homogeneous image regions thanks to its ��lling-in�

mechanism.

Optical �ow is de�ned as the pattern of apparent motion of objects and caused

by the relative motion of objects and the viewer. It provides worthy informa-

tion about the spatial arrangement of objects and the rate of changes in their

positions. Discontinuities in the optical �ow help extracting object regions from

the image and learning the shapes, distances and movements of the objects [11].

Binocular disparity, on the other hand, refers to the di�erence of an image posi-

tion resulting from two retinal projections, caused by the horizontal separation

of eyes [30]. It is used to extract depth information. In computer vision, depth

information is measured from the relative positions of similar features extracted

from two stereo images of the same scene.

As the de�nitions and application areas of both optical �ow and binocular dis-

parity describe, their roles for perception and vision are signi�cant. However,

considering their application areas and related literature in computer vision,

they both have a common weakness as they are not capable of extracting infor-

mation from non-textured areas. Narrowing this gap is only possible by applying

��lling-in� mechanisms of HVS to arti�cial vision systems [28].

Filling-in is a perceptual phenomenon of HVS describing how the inadequate

information is completed throughout the physiological blind spot, natural and

7



arti�cial scotomata. This mechanism simply di�uses visual information around

the borders into the visual region, eventually creates a non-existent visual fea-

ture from surrounding area. This phenomenon may cause one to think that some

visual cue is perceived inside of a region when it is actually absent there [14]. It

combines visual illusion with perceptual completion [28], which has two types:

boundary completion, in which illusory contours occur as the continuation of

contours in the surrounding area; and feature-based completion occuring due

to features such as color, brightness, motion, texture and depth. In computer

vision, �lling-in mechanism is succeeded in a similar manner with HVS, by de-

livering the reliable visual information at borders into the region. For such a

purpose, border-region assignments should be handled.

To summarize, BO information is very important for both biological and arti-

�cial vision as it completes de�cient visual information. It is applied on many

vision problems such as optical �ow, stereo disparity, object detection and depth

perception.

2.2 Graphical Models

A probabilistic graphical model is considered as the most associate solution to

construct a model corresponding to both probability and graph theories. Thanks

to graphical models, it is possible to model a complex system with its contextual

relationships. Probabilistic aspect of these models helps us to know how this

model is successful at gathering the simpler parts of a graph. The parameters are

estimated, the hidden states are inferred with respect to observations through

this aspect. On the other hand, graph theoretic aspect enables us to model the

whole system as a graph, making it visually solid. It is more feasible to design

general-purpose algorithms by using graphical models [24].

Probabilistic graphical models can be represented as G = (V,E) where V stands

for the vertices (i.e. nodes) and E stands for the edges (i.e. arcs) of the graph.

Nodes represent random variables as the arcs represent conditional independence

assumptions. Arc representation helps to create a compact representation of

8



probability distributions, which makes inference and learning easier. Here is a

simple example of how the conditional independence relationships allow us to

specify the joint distribution more compactly, whose graph is shown in Figure

2.2. According to the chain rule of probability, we can de�ne the joint probability

of all vertices as:

P (A,B,C,D) = P (A)P (B|A)P (C|A,B)P (D|A,B,C). (2.1)

B is independent of C considering A as its parent. Besides D is also independent

of A as B and C are its parents. In the light of these conditional independence

relationships, the joint probability can be rewritten as follows:

P (A,B,C,D) = P (A)P (B|A)P (C|A)P (D|B,C). (2.2)

A

B

D

C

Figure 2.2: A simple directed graph example

There exist two types of graphical models: directed and undirected. Directed

graphical models (DGMs) are mostly used in arti�cial intelligence and machine

learning areas. On the other hand, undirected graphical models (UGMs) are

widely used in CV. Despite the disadvantages of UGMs such that parameter

estimation is computationally more expensive, UGM is a more preferred model

for CV as it is symmetric, and thus convenient for spatial data. Besides, each

image site can use any feature from the whole image by using CRF, which is not

possible for MRF.

An arti�cial image can be a random group of independent pixels, but it is not

valid for any natural image. Pixels, segments or even regions are arranged

9



spatially in a relationship with each other in a real scene. Contextual interactions

can be in various types: An object can be de�ned as the meaningful combination

of di�erent parts or a semantic neighborhood of objects can be de�ned by the

objects included. Thus, image context is assumed to have two main types: local

and global. Local context describes the interaction between the parts of an object

whereas the global context shows the interaction of objects (or speci�c image

regions). The problem for generic object detection using natural images is how

to model various types of context, considering the relationships between both

observations and labels. Undirected graphical models help us to overcome this

problem for CV.

2.2.1 Markov Random Fields

Markov Random Field (MRF) is a widely used undirected graphical model in

computer vision, whose elements are random variables showing the Markov prop-

erty. The Markov property simply states that each edge in the graph represents

dependency, thus nodes which are not connected with an edge are independent

from each other. More clearly, the Markov property consists of three properties

of locality, which are:

• Pairwise Markov Property: Any two non-adjacent variables are con-

ditionally independent.

• Local Markov Property: A variable is conditionally independent of all

other variables given its neighbors.

• Global Markov Property: Any two subsets of variables are condition-

ally independent given a separating subset.

MRF is used to model the joint probability of the observations and labels. How

an MRF model is utilized in image analysis is as follows:

Let x be the observations from the image (i.e. intensity) and y be the corre-

sponding labels of these observations, represented as a vector of random vari-

ables. For MRF, the posterior probability over the labels have to be maximized
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with respect to the observations, which is p(x|y). Bayes rule de�nes the condi-
tional probability as p(y|x) = p(y)p(x|y).

Assuming that the observations are conditionally independent given the labels,

the posterior distribution over the labels is de�ned as follows [16]:

p(y|x) = 1

Z
exp

(∑
i∈S

log p(fi(x)|y) +
∑
i∈S

∑
j∈Ni

βyiyj

)
, (2.3)

where β is the interaction parameter of the MRF, Z is the normalization pa-

rameter, and fi(x) represents the relevant feature vector of x. Note that fx is

a single-site feature vector, which means it uses data only from a unique site.

Conditional independence of data assumption states that the posterior is also

MRF besides that the label prior p(y).

MRF has two main drawbacks for image analysis:

• p(x|y) is assumed to have a factorized form as p(x|y) =
∏
p(xi, yi). The

factorization causes the data to be independent of others, but as mentioned

before, in real images the data is often dependent on others, especially the

neighbors.

• The label interaction is accepted as a prior for MRF. This means that the

label interactions do not depend on the observations, but this, also is not

valid for real scene images.

In conclusion, for the purpose of using graphical models in computer vision, the

posterior distribution of labels p(y|x) has to be estimated, but MRF succeeds

this only for the observed sequence, thus it is not able to produce a global

solution. Using generative training methods as MRF allows to use features that

condition on the observed sequence at no penalty in terms of model complexity.

On the other hand, for discriminative methods such as CRF, the features are

separate factors for each individual label as far as the model is concerned. In

other words, while a generative method models the joint distribution p(x, y)

that requires separate models for each observation sequence, a discriminative
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framework directly models p(y|x), which reduces computational complexity.

2.2.2 Conditional Random Fields

CRFs are discriminative models which directly model the conditional distribu-

tion over labels, i.e. p(y|x) as a Markov model. This approach allows to capture

arbitrary dependencies between the observations without resorting to any model

approximations.

Let observed image data be abbreviated as x = {xi}i∈S, whereas the correspond-
ing labels are shown as y = {yi}i∈S. Additionally, assume that G = (S,E) is

a graph such that y is indexed by the vertex that belongs to G. Due to these

assumptions, (x, y) is a CRF if yi, which are conditioned on x, obey the Markov

property. This property can be summarized as:

p(yi|x, yS−{i}) = p(yi|x, yNi), (2.4)

where S − {i} is the set of all the nodes in the graph except the node i, Ni is

the set of neighbors of the node i in G, and xw represents the set of labels at

the nodes in set w.

With respect to the de�nition, it can be de�ned that a CRF is a random �eld

globally conditioned on the observations. According to the Markov-Gibbs equiv-

alence, conditional distribution over all labels y given observations x in a CRF

is de�ned as

p(y|x,W ) =
1

Z
exp

(∑
iεS

Ai(xi, y, w0) +
∑
iεS

∑
jεNi

Iij(xi, xj, y, w1)

)
. (2.5)

In this equation,

• Z corresponds to the normalizing constant, which is also known as the

partition function.

• Ai corresponds to the node/unary/association potential on clique i.
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• Iij corresponds to the edge/pairwise/interaction potential on set of cliques

i and j.

• W corresponds to the parameter set W = w0, w1.

Node potential denotes the association of a single graph node to semantic labels.

On the other hand, edge potentials denote how much the labels of nodes located

on the same edge should interact each other.

Using a logistic function, local class conditional probability function can be

written as follows:

p′(yi = 1|fi(x)) =
1

1 + e−(w0 + wT1 fi(x))
= σ(w0 + wT1 fi(x)), (2.6a)

where the node potential is

A(yi, x) = log p′(yi|fi(x)), (2.6b)

and the edge potential is

I(yi, yj, x) = log p′′(yi, yj|φi(x), φi(x)). (2.6c)

Edge potential can be considered as a function of features (φ), that measures

the relationship, i.e. de�nes the semantic relation between two neighbor nodes.

It is usually constructed upon the observations, behaviors and relations of data.

Thus, for a CV problem, an edge potential can be constructed upon the ra-

tio of color mean values, number of overlapping pixels, distance between two

regions/points etc.

Image labeling problem is simply the problem of inferring labels (y), of observa-

tions extracted from image (x). Several CV problems such as stereo matching,

image segmentation or image restoration can be posed as image labeling prob-

lems. To solve this problem, the algorithm should automatically partition the
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image into semantically meaningful areas, each labeled with a class. With its

mathematical de�nition, the problem is to �nd the most proper y that maximizes

the conditional probability p(y|x) :

y∗ = argmax
y
P (y|x). (2.7)

For labeling, two kinds of information are needed [17]:

• Spectral and spatial features from individual sites (intensity, color, texture,

size etc.)

• Interactions with neighboring sites (contextual information)

CRFs are suitable to de�ne object interactions and learn contextual relationships

in images, if the relations of both labels and features of di�erent sites/pixels/regions

are to be fed to the model. It has various real-world applications in image pro-

cessing: binary CRF for detection of man-made structures and multi-class CRF

for purposes such as image classi�cation and contextual object detection.

CRF models perform much better for real-world sequence problems as the results

of studies using both CRF & MRF [17, 42] show. The primary advantage of

CRFs over hidden Markov models is their conditional nature, resulting in the

relaxation of the independence assumptions required by HMMs in order to ensure

tractable inference. Additionally, CRFs avoid the label bias problem, a weakness

exhibited by maximum entropy Markov models (MEMMs) and other conditional

Markov models based on directed graphical models.

To summarize, CRFs are suitable to de�ne object interactions and learn con-

textual relationships in images. Thanks to CRFs, relations of both labels and

features of di�erent sites/pixels/regions are possible to be fed to the model. It

has various real-world applications in image processing: binary CRF for detec-

tion of man-made structures and multi-class CRF for purposes such as image

classi�cation and contextual object detection [16].
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2.3 Tensor Algebra

With respect to tensor algebra, generating new vectors is possible only by mul-

tiplying vectors by scalars. The resulting vectors have di�erent magnitudes but

they represent the same direction. To change both direction and magnitude, nei-

ther dot product nor cross product works. Dot product returns a scalar value,

on the other hand it is not possible to identify multiple directions separately by

cross product.

In physics, it is necessary to represent data having more than one direction. For

instance, two basis vectors are needed to represent the forces applied inside a

solid object: the �rst one is for the area vector and the second one is for the force

applied on the area. The tensor composed of these vectors is called stress, which

means force per unit area. Stress has the units of N/m2, and it is represented

by tensors.

Tensors hold information about directions and magnitudes of these directions.

They are simply mathematical objects used for representing real-world systems.

It is proved that tensor algebra is very useful in many engineering contexts

such as �uid dynamics, machine learning, and besides, in the analysis of other

complex systems such as �nance [23].

Vector algebra is a subsection of tensor algebra, as vectors are considered as

tensor of rank 1, which has magnitude and one direction. With respect to

tensor terminology, tensors of consecutive ranks are named as follows:

• Scalar: Tensor of rank 0 (Only magnitude)

• Vector: Tensor of rank 1 (Magnitude & 1 direction)

• Dyad: Tensor of rank 2 (Magnitude & 2 direction)
...

...

Regarding its practical importance, a 2nd order tensor can be considered as a

linear operator that transforms a vector into another vector through a dot prod-

uct. More generally, tensors are multi-dimensional generalizations of matrices,
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which enables the use of multiple directions & magnitudes.

2.3.1 Tensor Voting

Lee & Medioni [18] proposed a uni�ed computational framework for inferring

perceptual structures from sparse binary data, which is either noisy, oriented or

non-oriented. The perceptual structures they considered are:

• Curves and junctions for 2-D data

• Curves, junctions and surfaces for 3-D data

For data representation, tensor is utilized and all the calculations are handled

through linear voting. Lee & Medioni proposed this combinatory method called

Tensor Voting (TV) for perceptual organization based on the Gestalt princi-

ples. The method is initially applied on various computer vision problems such

as boundary inference, stereo matching, then it is extended to instance-based

learning [23].

Many problems related to computer vision has a common characteristic of being

ill-posed, computationally expensive and corrupted by noise. Besides, many of

these can be evaluated under the concept of perceptual organization of primitives

as their solutions usually have perceptually salient patterns. The idea of TV

framework comes from a general, data-driven solution of capturing salient visual

structures. It addresses a wide range of problems of perceptual organization, and

utilizes Gestalt principles.

Gestalt psychology was developed during 1920s by three German psychologists:

Wertheimer, Kafka and Kohler. They found out that HVS subconsciously seg-

regates and groups visual information in order to perceive it as a whole. Gestalt

motto states [47]: "The whole is greater than the sum of the parts", i.e., the

gatherings of visual pieces provide better information about the perceptual struc-

tures than individually. In Figure 2.3, some examples of Gestalt principles are

given [23]. In Figure 2.3a, regarding the proximity rule, human perception

groups the dots into four by their distances to each other. In Figure 2.3b, dots
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are grouped in pairwise horizontally, with respect to their colors. In Figure

2.3c, the curve from A to B is perceived as a whole as it obeys the continuation

rule. Finally in Figure 2.3d, the curves are perceived as an ellipse and a square

interfered with each other, due to the closure rule.

(a) Proximity
(b) Similarity

(c) Good continuation (d) Closure and simplicity

Figure 2.3: Examples of Gestalt principles
Adapted from: [3]

Properties of TV framework are given as follows:

• General

→ provides model-free solutions

• Local

→ local changes a�ect descriptions locally

• Data-driven

→ needs no training

• Computationally inexpensive

→ able to process large data

• Robust to noise

→ able to tolerate large number of outliers

• Based on Gestalt principles of proximity and good continuation

Data representation of TV is in the form of a 2nd order, symmetric, non-negative

de�nite tensor. The tensor infers both the saliency value and the preferred

orientation of perceptual structures including curve, junction and region in 2-D
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the token belongs to. How the TV framework works for 2-D is summarized by

its main steps in Figure 2.4. The methodology is based on two components [21]:

• Tensor calculus: used for data representation

• Tensor voting: used for data communication & vote propagation

Initially, each input token is encoded into a tensor. If the input is a point, it

is encoded as a ball tensor of unit radius. Otherwise if it is a curve, then it is

encoded as a stick tensor with direction information.

Figure 2.4: 2-D Tensor Voting methodology schema
Adapted from: [23]

After the decoding process, a two-phase tensor voting procedure is applied. The

�rst one is called sparse voting while the second one is called dense. In sparse
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voting, all tokens propagate their information to each other in a limited neighbor-

hood, which is called tensor communication. Thanks to this voting, knowledge

of curve orientation and the saliency of the knowledge are consolidated, thus

tensor tokens become re�ned. De�nition of the neighborhood, which depends

on the tensor type, are provided ahead. Later on, in dense voting part, ten-

sors propagate their re�ned information to every point in their neighborhood.

Ball components of the tensors are not incorporated into voting in this phase.

Finally, resulting dense tensor map is decomposed into junction and curve maps.

Details of each process in tensor voting framework, which are encoding, voting

and decomposing, are mentioned in the following sections.

2.3.1.1 Encoding

A 2nd order symmetric, non-negative de�nite tensor (brie�y, 2-D tensor) can be

considered as a 2x2 matrix, or an ellipse in 2D. A visual input for tensor voting

framework, which is either a point or a piece of curve, is encoded as a unit ball

or stick tensor respectively. Corresponding tensors, eigenvalues and quadratic

forms (2x2 matrices) of oriented (curve) & non-oriented (point) inputs are given

in Figure 2.5.

Figure 2.5: Geometric descriptions of stick and ball tensors
Adapted from: [23]

A 2-D tensor can be decomposed as:

T = λ1e1e
T
1 + λ2e2e

T
2 = (λ1 − λ2)e1eT1 + λ2(e1e

T
1 + e2e

T
2 ), (2.8)
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where λ and e are for eigenvalues and eigenvectors, respectively. The �rst part

of the second sum in the equation, which is (λ1 − λ2)e1eT1 , corresponds to the

stick component of the tensor. If T equals to this component, then the tensor is

called stick tensor . It has a degenerate elongated ellipsoid structure, as seen in

Figure 2.5. Presence of a stick tensor means that a piece of curve exists on that

position with e1 as the curve normal. The size of the stick component, which is

(λ1 − λ2) indicates the curve saliency.

On the other hand, the second part of the sum, which is λ2(e1eT1 + e2e
T
2 ), cor-

responds to the ball component of the tensor, directly called ball tensor . It

represents a perceptual structure having no orientation, or multiple orientations

which neutralizes each other at this point. The size of the tensor, again, pro-

vides the certainty of information existing on this position. As understood from

its name, geometrically ball tensor is in the shape of a circular disk, as seen in

Figure 2.5.

The properties of a 2-D tensor are [23]:

• The axes of the ellipse are the eigenvectors of the tensor.

• The aspect ratio of the axes is the ratio of the eigenvalues.

• The major axis is the preferred normal orientation of a potential curve

going through the location.

• The shape of the ellipse indicates the certainty of the preferred orientation.

1. An elongated ellipse represents a token with high certainty of ori-

entation

2. A degenerate ellipse with only one non-zero eigenvalue represents a

perfectly oriented point (i.e. a curvel)

3. An ellipse with two equal eigenvalues represents a token with no

preference for any orientation.

• Tensor size encodes the saliency of the information encoded.

1. Larger tensors convey more salient information than others.
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Figure 2.6: Tensor decomposition in 2D
Adapted from: [23]

In Figure 2.6, it is shown that how a generic tensor is decomposed into stick and

ball components. As the tensor has parameters λ1, λ2, e1, e2 as its eigenvalues

and eigenvectors, it simply means that:

• The orientation of its normal is at the direction of ê.

• The saliency of the curve is measured by λ1 − λ2

Details of each process in tensor voting framework, which are encoding, voting

and decomposing, are mentioned in the following sections.

2.3.1.2 Voting

After the input tensor encoding is completed, two-phase voting is implemented,

which are sparse and dense voting. Procedures of these two voting types are

same, they both can be considered as a tensor convolution with separate voting

kernels. The main di�erence arises from the voting domain. Besides in dense

voting, votes of ball tensors are ignored as they de�ne isolated features.

In sparse voting, tensors vote others located in their neighborhood. A generic

tensor is generated at each token location, which equals to the tensor sum of all

votes there. Sparse voting deduces the most preferred orientation by re�ning the

initial one for each token. Thus, sparse voting is called as token re�nement .

On the other hand, tensors vote every point in their neighborhood in dense

voting. Initially, each generic tensor is decomposed into its ball and stick com-
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ponents. Ball and stick tensors have distinctive voting �elds, and these �elds

de�ne their neighborhoods. They broadcast their information to all discrete cell

locations in these neighborhoods. Simply, dense voting extrapolates the infor-

mation to the whole domain so as to extract features coherently. That's why, it

is also called as dense extrapolation .

As described, ball and stick tensors own their voting kernels. Instead, all voting

kernels, regardless of the dimension (2-D/3-D), or the type (stick/ball/plate),

are derived from the fundamental 2-D stick kernel. Before de�ning 2-D stick

kernel, let us examine the vote of a stick tensor, which is visualized in Figure

2.7.

Figure 2.7: Vote of stick tensor
Adapted from: [23]

Mordohai and Medioni [23] claim that the bold curve in Figure 2.7 is the most

likely smooth path between P and O, as it is the arc of the osculating circle.

Thus, the vote cast at O by a stick tensor at P has the direction of the tangent.

Besides, they state that the vote should attenuate with respect to distance and

curvature. Under these considerations, the saliency decay function is de�ned,

which has the following form:

DF (s, κ, σ) = e−
s2+cκ2

σ2 , (2.9)

where s is the arc length, c is the decay control function, σ is the scale of voting,

determining the e�ective neighborhood size and k is the curvature.
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2-D stick and ball votes of a unit stick tensor, of which the parameters are

shown in Figure 2.7, are formulated as below in Equations 2.10 & 2.11. Unit

vote is used in sparse voting as all tensors have unit magnitude. Otherwise, for

a generic stick tensor of arbitrary size, the vote has to be multiplied by the size,

i.e., (λ1−λ2). As easily understood from both the geometric representation and

the formulation, ball vote function is simply a fully-rotated version of stick vote

function.

V oteStick = DF (s, κ, σ) [− sin(2θ) cos(2θ)]T [− sin(2θ) cos(2θ)] , (2.10)

V oteBall =

2θ∫
0

R−1θ V oteStick(RθP )R
−T
θ dθ. (2.11)

A voting �eld can be considered as a map in which directions (orientations) and

magnitudes of all votes cast by the voter tensor are shown. Votes are stored

in these pre-computed voting �elds, thus the expense of computation decreases

during voting.
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CHAPTER 3

RELATED WORK

In this chapter, current literature on BO problem are explained under two sec-

tions. All remarkable researches and studies about BO problem are mentioned

in the �rst section. Later, existing BO datasets are described. Devoting a whole

section to datasets is necessary as the data variety is crucial for estimating BO.

3.1 Studies of Border Ownership Problem

BO problem is a quite new research topic and it has received insu�cient attention

so far. Current studies can be separated into two groups: the ones based on

psychological and physiological experiments, tested on arti�cial images and the

ones working with real, complex imagery.

First group of studies basically aim to generate the model based upon the HVS

and neural system [8, 13, 31, 32, 39, 50]. They commonly investigate the neural

mechanisms for BO determination. Neural networks are among the mostly-used

methods for BO problem [8, 13]. Neural networks are the computational models

constructed on central nervous systems of animals, which are responsible for

handling machine learning and pattern recognition operations. It is suitable

for generating realistic border-ownership models, as it simulates human neural

system. The methodology followed by this group of studies is mostly in this

order:

• Measurement of stimuli changes on psychological and physiological exper-
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iments

• Evaluation of the data collected on the �rst step

• Generating a model based on human neural system

Initial studies focused on �nding out which parts of the neural system decide

border ownership, and which visual cues have what kind of e�ects on this deci-

sion. Physiological experiments on monkeys have shown that V2 and V4 areas

of visual cortex decide the owner of a visual border. They found out that 50% of

BO-selective neurons respond to the contrast polarity of the border [50]. A net-

work model of contrast-dependent BO-selective neurons is developed in the light

of this knowledge [26]. It consists of three main stages: contrast detection by

V1 simple-cell-like units, determination of surrounding contrast con�guration,

and contrast-dependent BO determination. This study, as other experimental

studies, shows the lack of utilizing complex visual information in its model. It

states that BO studies using junctions are not physiologically realistic despite

the existence of such models, as any neurons selective to complex visual infor-

mation such as junctions have not been reported yet. There exist experimental

facts supporting this assumption: The latency of BO-selective neurons is nearly

10 ms, that's why complex processes like junction detection cannot be involved.

Although this fact is still valid, knowledge of T-junctions' being the most reliable

cue creates a signi�cant con�ict while constructing an ideal model. Zhaoping

[49] also uses a model of V2 neurons in order to prove that V2 visual area

can produce the ownership signal by itself, without the need of any top-down

mechanism or spatial information of T and L junctions.

On the contrary, there exist studies stating spatial properties such as shape or

junctions have signi�cant impact on BO decision. Tomasi et al. [44] imitates

the initial stage of HVS while extracting shape and motion information from

image streams. This initial vision stage is called early vision. In the early

vision, shape, appearance and motion of objects are detected while semantic

interpretation is handled in the latter processes, which belong to higher levels

of vision. Zhou et al. [50] found through physiological experiments that there

exist cells responsible of encoding which local contours belong to the object.
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In the light of this exploration, it can be argued that shape and appearance

have impact on border ownership. Kikuchi and Akashi [13] generates a sim-

ple neural network model stating that BO is encoded in early vision. Their

computer simulation also con�rmed that the cells in their model showed similar

responses with the cells coding BO information, which Zhou found [50]. This

neural network model uses contrast, orientation, curvature and L-junctions as

visual cues. The method exhibits a shortfall, which is labeling only one side of

boundary by using L-junctions and curvatures as cues, since the neural model

forces such an assumption. Additionally, it has two other common de�ciencies

with the other physiological models: low quality of the data set and generalized

assumptions due to the results. In Figure 3.1, simulation data of this study, and

their corresponding BO results are shown. Short lines represent the direction

of �gure to which border belongs at that location. The data is obviously sim-

ple and arti�cial, results of which are quite impossible to be practiced on real

imagery. Moreover, as the �rst two images have reversed contrast polarity and

the network showed same response, it is stated that the model has a behavior

of contrast independent border-ownership coding cells. Although this deduction

is valid for the model, it is certain that an e�cient cue like junction is ignored.

Albert [6] also compared shape-based cues on BO decision by measuring stim-

uli changes of perception neurons. Samples from the dataset used is shown in

Figure 3.2, which are similarly simple and arti�cial.
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Figure 3.1: BO dataset example - 1
Source: [13]

Figure 3.2: BO dataset example - 2
Source: [6]

Second group of studies use natural images, with up-to-date methods such as

graphical models. They are mostly prepared under the titles of "�gure-ground

organization/segregation/separation", but these titles refer the same problem

with BO, as the detection of �gure-ground reveals BO information. Peterson

[29] showed that familiar con�gurations of meaningful borders, such as bound-

aries of recognizable objects, provide a powerful cue for BO information. After

Peterson's this result, Malik, Fowlkes and Ren [35] tried to generate a decision

mechanism for familiar con�guration in terms of prototypical local shapes, with-
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out the requirement of object detection. Initially, Malik et al. [9] introduced

"shape context", which corresponds to a shape descriptor compressing the infor-

mation of local arrangement of edges in a log-polar structure. It simply works

by counting the number of edge points inside each bin, relatively to a center

point. Later, they introduced the de�nition of "shapeme" [36], an orientation-

independent generic shape descriptor. The aim of de�ning shapemes is to learn

local FG cues automatically. Shapemes are constructed just by clustering a large

set of shape context descriptors. They are used for FG segregation as follows:

• The similarity of the local shape extracted from test image is measured

for each shapeme in the shapeme set, which is provided in Figure 3.3.

• A logistic classi�er is trained to predict FG label by using this similarity

measure set as feature vector.

Figure 3.3: Shapeme set for FG segragation
Source: [36]

As stated, shapemes are de�ned as visual cues without any de�nition. Results

show that they can represent the characteristics of Gestalt cues. In the shapeme

table 3.3, cue at the rightmost top corner represents convexity cue while the one

at the rightmost bottom corner de�nes the parallelism cue. Results of this study

also prove that shapemes capture other mid-level cues such as texture. Shapeme

classi�er has shown BO labeling accuracy of 64% on human-marked boundaries
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of 200 natural images.

Second model of Malik et al. [36] applies the concept of familiar con�guration

on the BO problem both through local and global aspects in order. A logis-

tic classi�er is developed to locally predict FG labels, based on the shapeme

representation. After local �ndings, a global FG model using conditional ran-

dom �eld is used to enforce global consistency by learning T-junction frequency

and continuity. Inference on this model is handled by loopy belief propagation.

They show that their shapeme-based classi�er outperform when compared to a

baseline model using cues of size & convexity.

Integration of local and global approaches provides signi�cant advantages to

Malik et al. in their study [36]. Firstly, thanks to a local model, Gestalt cues

are enabled to use, and this provides an important contribution to results as

proven [32]. Secondly, although CRF is used to develop a global model, it

enables separating image sites not only to model semantic interactions, but also

each site can potentially use features from the whole image, unlike MRF as

Kumar [15] states.

Local model provides the estimated probability (pb) stating that the left side

of each border (b) is �gure. On the other hand, global model combines the

estimated probability with junction information as follows:

P (Y |I, θ) = 1

Z
exp

(∑
µ(YB|I, θ) +

∑
η(YJ |I, θ)

)
, (3.1)

where YB is associated with labels of BO, where YB = 1 states that region at the

left side of the border is the owner while YB = −1 states the opposite decision

as YB = 0 means that no border ownership information is gathered. µ is the

node potential function on each border, whereas η is a potential function on

each junction labeled with YJ .

Malik used a FG dataset of 200 images with a resolution of 321x481, 100 for

testing and 100 for training [36]. For this data set, they obtained an accuracy of

72% by using only the local model of shapemes. With the combination of local

and global models, they acquired an increase of accuracy by 7%. Evaluating their
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results, they state that human subjects showed a 88% score of labeling, thus they

showed an unforeseeable success. As the results are successful, considering such

a small data set, a cross validation method could have been used for experiments

for a more successful and realistic model.

To sum up, BO studies carried out through the present day reveal two important

facts about BO problem: experimental studies are not able to produce reliable

results, datasets are inadequate as their contents are either synthetic, simple or

their numbers are not su�cient.

3.2 Datasets for Border Ownership Problem

A BO dataset should consist of images with boundary images where segments

(regions) and edges (borders) are labeled. Moreover, all borders should be as-

signed to the regions which they belong to.

There exist a few image databases with their borders extracted. They are mostly

generated by tools like LabelMe, which is a free on-line annotation tool to build

image databases [38]. These databases do not include BO information either.

Besides, those datasets consist of insu�cient number of images. Fowkles et al.

generated a data set of 200 outdoor images for the purpose of developing a

computational model for FG assignment [36].

On the other hand, BO studies have mostly concentrated on visual perception

so far. They observe the role of di�erent visual inputs and cues on the stimuli

changes in V1 and V2 areas of visual cortex. With respect to eye tracking

of test subject (frequently awake monkeys), the neural responses of the visual

cues are measured. Thus, the images used in these experiments should be as

simple as they only show the characteristics of relevant visual cue. The images

that Nishimura & Sakai [26] and Kikuchi & Akashi [13] used in their neural

experiments can be seen in Figure 3.4. These gray-scale and binary images,

respectively, are quite simple and synthetic images. It is not guaranteed that

results would be similar if the same experiments are applied on real images.

That's why the ability of generalization and satisfactoriness of these studies are
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quite suspicious.

(a) Nishimura & Sakai
Source: [26]

(b) Kikuchi & Akashi
Source: [13]

Figure 3.4: Test images for BO experiments

Berkeley Figure/Ground Dataset is used in several BO studies [36]. Each FG

labeling in this dataset is associated with its segmentation mask from Berkeley

Segmentation Dataset (BSDS). It is completely a real imagery data set. Al-

though the images, segmentations and all relevant code are shared, 400 �gure-

ground labeling data is available to use among 1636 images. Besides, there exist

quite wrong boundaries, which can not be considered to separate �gure and

ground areas, as in Figure 3.5. In this �gure, wrong drawings are colored blue

in the second image.

Figure 3.5: Example data drawn erroneously from BSDS
Source: [36]

To summarize, there is a precise need of a new dataset for BO problem, due to

reasons such as insu�cient number of data and unreliable drawings & labellings.
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CHAPTER 4

METHODOLOGY

In order to extract certain border ownership information, two di�erent methods

are developed, which are based on supervised and an unsupervised learning, re-

spectively. In the �rst approach, CRF is used for developing a trained graphical

BO model. In the second approach, a linear voting method called Tensor Voting

is adapted to BO problem, under a brand new method named Iterative Vector

Voting.

In the following sections, details of the methodology are explained. Initially,

visual cues (i.e. features) used in the experiments are mentioned. Then, two

models developed for BO are introduced, which are as follows:

• CRF-based BO model

• Iterative pixel-based vector voting

4.1 Border Ownership Cues

In both supervised and unsupervised approaches, several cues are tested. Those

are size, curvature, junctions, lower region, contrast, convexity, boundary length,

contrast and texture. All these cues adapt Gestalt psychology, however some

cannot be used in the pixel-based approach due to being region-wide. Although

Gestalt principles may sometimes lead human vision perceive erroneously, these

cues are among the most accurate ones for �gure-ground segregation as previous

studies show. In the following sections, they are de�ned with respect to Gestalt
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terminology and illustrated by visual examples.

4.1.1 Size

The smaller of two objects is considered as the �gure laid on a larger background.

Thus, this rule is also known as "smallness". It is �rstly introduced by Rubin

[37], and found as the most powerful cue in the study [36], which uses size, lower-

region and convexity as Gestalt visual cues. In the following visual example 4.1,

it can be observed that black rectangle, which is smaller, is perceived as �gure.

Figure 4.1: Rectangles - size cue

Here below in Figure 4.2, two di�erent versions of classical Rubin vase example

are visualized, in which the distance between two borders varies. In the �rst

image, the vase is favored while faces are favored as �gure in the second image

due to the principle of smallness.

Figure 4.2: Rubin vase - size cue
Adapted from: [4]
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4.1.2 Contrast

Contrast di�erence between visual regions is essential to separate objects from

background. On the contrary, objects blend into the background. Just as some

animals depend upon this principle to camou�age themselves in nature, contrast

is a powerful cue for hiding or highlighting objects. As seen in Figure 4.3, as

contrast value between words and the background decreases, FG segregation

becomes harder.

Figure 4.3: Example - contrast cue
Source: [4]

4.1.3 Entropy

Image entropy is a quantity used to describe the randomness of an image. It is

mostly considered to measure the energy, texture & information as it represents

the amount of information which must be coded by a compression algorithm.

Low entropy image does not have high rate of texture, high number of sudden

intensity changes and consequently high energy. Thus it can be compressed

to a relatively small size. There exist various ways of entropy calculation, as

energy/texture does not have a unique representation but mostly, entropy is

calculated as follows:

Entropy = −
∑
j

Pjlog2Pj, (4.1)

where Pj is the probability that the di�erence between two adjacent pixels is

35



equal to j. Probability Pj is simply calculated by the histogram counts.

Region with more textured structure is more probable owner of the border,

compared to the coarse, �at one having lower entropy [10, 36]. In Figure 4.4,

a simple real-life example, a scene of moon, is shown supporting entropy cue.

Textured surface of the moon shows the characteristics of foreground as the

black sky has a �at and non-textured surface, which suits the assumptions of

entropy rule for background.

Figure 4.4: Example - entropy cue
Source: [4]

Besides these powerful features, there exist three other visual cues for FG orga-

nization, which are surroundedness, symmetry and convexity. These are quiet

weak features, compared to previous ones. Also the early studies have provided

results supporting this weakness, thus they were not used in the �nal experi-

ments. In the following two sections, these cues are explained.

4.1.4 Convexity

When all constraints provide no decision of ownership, convex (protruding)

rather than concave (indented) patterns tend to be perceived as �gures. In

Figure 4.5, black convex regions tend to be �gures with respect to Gestalt

psychology.
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Figure 4.5: Example - convexity cue
Source: [4]

Besides Gestalt visual cues, there exist some other strong visual cues for deter-

mining border ownership: junctions, lower-region and texture.

4.1.5 Junctions

Junctions are visual structures that occur at the intersection areas of borders.

There exist four kinds of junctions which are named with respect to their shapes:

T-junction, L-junction, Y-junction and arrow-junction, shown in Figure 4.6.

Figure 4.6: Junction types

Among these, T and L junctions provide reliable information for FG organiza-

tion, if they are located on the boundary [34, 36]. However T-junction is the

strongest cue of all, as relevant studies show [10, 36]. Thesis results also support

these: T-junctions assign the owner of its widest border very successfully, with

a precision of 74.7%. How T and L junctions are evaluated for FG segregation

is visualized in Figure 4.7.
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Figure 4.7: (a) Sample image (b) All junctions are colored red (c) BO decisions
of T & L junctions. Red arrows show the owner region of shared border. In
T-junction, the shared border is the horizontal line, whereas in L-junction it is
the whole line (d) Directions of owner regions in the sample image

Source: [27]

4.1.6 Lower Region

Regions in the lower portion of the display are mostly considered as �gures. This

cue is initially introduced by Vecera et al. [45]. It is also used for the purpose

of depth perception [20]. The results show signi�cant success, which is 64.4%

accuracy [36].

4.2 Methods Developed for Border Ownership Problem

To estimate the border ownership (BO) information, two methods are developed,

which are Conditional Random Fields (CRF) and Iterative Vector Voting (IVV)

models. CRF-based BO model is a graphical model utilizing the contextual

relationships between neighbor regions, whereas IVV model is an unsupervised,

pixel-based voting algorithm based on Tensor Voting (TV).
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4.2.1 Extraction of Border Ownership Information by Conditional

Random Fields

We de�ne BO as a conditional probability distribution P (Y |X) where X and Y

are random variables. X corresponds to pairwise observation sequences of neigh-

bor regions, which provide various visual information about themselves such as

contrast or texture, whereas Y are their corresponding labels, conditioned on

X.

To acquire a distribution of BO labeling data, generative models must enumerate

all possible observation sequences, which is quite impossible. It is also possible to

use global features in MRF by connecting a factor to all nodes, but it complicates

inference signi�cantly. For a BO model with CRF, it is only needed to do

inference and optimization over the label nodes of pairwise model that covers

neighbor regions, so it does not cost anything to add more factors.

The algorithm is on the basis of de�ning contextual relationships between two

neighbor regions as a graphical model, training it and re�ning the initial labels

with respect to the model. The model is visualized in Figure 4.8. As mentioned,

the nodes represent two neighbor regions R1 and R2 whereas the edge stands for

the shared border E. Node labels de�ne which region is the owner of the border.

Node value 1 is given to the owner region while the other region is labeled with

0.

Figure 4.8: Graphical representation of BO

CRF-based graphical model is developed using two spectral and two spatial,

region-based features, that are contrast, entropy, T-junctions and size respec-
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tively. According to the current literature, these are region-based cues giving

the best accuracy as mentioned in Section 4.1. Thesis experiments have also

provided such promising results supporting the literature. These features ef-

fect both node and edge potentials: each feature builds its own unary potential

whereas edge potential is built by concatenating all node features.

The model is very simple: 1 edge connecting 2 nodes, modeled as a Gibbs

distribution. The reason of constructing such a model is also simple, as Wallach

[46] states: More complex model needs more isolated, characteristic data. As

borders align between two neighbor areas, two nodes represent these region while

the edge represents the dependency between them.

As a graph of two neighbor regions do not cause any loop and there will not

be any intractability problem, exact inference is used to compute the partition

function and estimate marginal posterior distributions of labels Y . After estima-

tion, binary label of BO decision is assigned to each border through the simple

comparison of P(Y=1)>P(Y=-1) : If it is true, the border belongs to the �rst

region, otherwise to the second. All CRF calculations are succeeded with UGM

toolbox of Schmidt [40], which is publicly available on web.

Graphical models can be utilized to improve the initial labels of graph sequences

with respect to the observations. Initial labels are assigned by decisions of T-

junctions due to the following:

• T-junctions have shown an accuracy of 74,7% on BO assignment.

• It is not reasonable to use T-junction as a region-based feature as it does

not cover the whole border.

While de�ning node potentials, entropy, contrast and size cues are used. Initially,

lower region and L-junctions are also considered for the model thanks to their

success at previous studies, but they are not preferred due to the following:

• Lower region is not su�cient for assigning a probabilistic value for BO:

If the region is below, then it is the owner of the border. Besides, lower-

region is used as a CRF cue initially despite its discrete value of (0,1), as it
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may behave better in combination with other cues. But results have also

supported our assumption, thus it is excluded from the �nalized version of

CRF-based model.

• L-junctions do not own a precise de�nition, the angle between two arms

of the junction is a free variable.

Usage and de�nitions of BO graphical model cues are provided below. How they

are calculated and what they represent are explained in details in Section 4.1.

• Entropy: Total entropy of region, calculated at gray scale color map.

• Contrast: Ratio of gray scale mean values of regions. Actually, it only

represents intensity mean values for node potentials, but concatenated

feature vector of edge potential implicitly provides contrast information.

• Size: Simply pixel numbers of regions.

• Convexity: Ratio of region's and its convex hull's areas.

Normalization to the range of [0,1] is applied on all three cues in order to balance

their contributions to the CRF model. Region with higher feature value is

revalued as 1, whereas the feature value of other region is normalized with respect

to its neighbor.

Probability distribution of our two-node BO graphical model is formulated as

follows:

P (R|x, µ)→ −
∑

N(Ri, x, µ)−
∑

E(Ri, Rj, x, µ). (4.2)

Posterior probability of BO information is simply calculated as the normalized

sum of all mono and pairwise potentials, which determine how labeling is handled

with respect to knowledge obtained from both single regions or neighbor pairs

of them. Here in the equation above N represents node potential whereas E

stands for edge potential and µ denotes the whole parameter set.
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Maximum a posteriori (MAP) of BO decisions are constructed upon initial la-

bellings, which are assigned by T-junctions. Node potential functionN is de�ned

as the negative log likelihood of region's BO decision probability conditioned on

four BO cues:

N(Ri) = −logP (JT |CRi). (4.3)

JT returns 1 or -1 with respect to the owner region. If no decision is made,

then it returns 0. CRi de�nes the feature value of region Ri. Edge potential is

constructed for each two neighbor regions by concatenating node potentials as

follows:

E(Ri, Rj) = [N(Ri)N(Rj)]. (4.4)

The whole dataset is separated randomly into two groups of same number: one

for training the model and one for testing. For each pair of neighbor regions,

a CRF model is constructed. Node and edge features are converted into node

and edge potentials using multi-class logistic function. Model parameters are

learned by minimizing the energy function which the potentials are fed to. In

the test phase, the CRF model for each neighboring pair of regions is inferred

by trained parameters. Exact inference is applied to learn BO labels.

4.3 Extraction of Border Ownership Information by Iterative Vector

Voting

Physical structure and working mechanism of HVS is very similar to monkey

visual system. In their experiments on awake monkeys, Lamme et al. [12]

showed that cells of V1 visual cortex produce more response to textured stimuli

whether the receptive �eld is on a visual area that belongs to a �gure, rather than

ground. This observation posed an important question, whether BO is decided

locally on the contrary with previous studies showing that the identi�cation of a

visual region is handled through global image processing. All these studies state
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that HVS should work on a region at least the same size with �gure. But Lamme

has revealed that FG segregation is handled by local processing of features, just

in a small neighborhood of point in consideration.

Lamme's point of view has signi�cant advantages but limitations, in comparison

to the results of other BO studies. Experiments show that HVS is very successful

on assigning BO values when a small region, mostly a sub-region, is shown to

subjects. Although it is a very controversial issue whether HVS solves this kind

of BO problems with a top-down or bottom-up approach, related experiments

and results encourage to use local visual structures and features while deciding

BO. Besides Lamme's experiments show that constructing a local model makes

sense, tensors' being de�ned as "small meaningful generic tokens" encourages to

de�ne local visual structures as tensors.

De�ning meaningful visual structures is still an arguable issue as the studies

concentrated on measuring visual stimulation mostly focus on pixels, on the

other hand there exist studies claiming that the whole boundary takes role on

deciding BO information. Besides all local-global or pixel-border discussions,

it makes sense to adapt unsupervised approach for BO problem in other ways.

Gestalt visual cues are mostly threshold-based features as they provide discrete

decisions about BO, simply as follows:

label(x) =

1, if x > threshold.

−1, otherwise.
(4.5)

With respect to both Lamme's view and Gestalt cues argued above, an unsuper-

vised, pixel-based algorithm seems to be an appropriate solution for estimating

BO information. That's why, a pixel-based voting approach is followed idn the

latter period of the thesis study,. TV is the best choice of voting algorithms,

despite a few changes are required to adapt it to the BO problem. Modi�cations

on voting and representation has led to a new voting algorithm called Iterative

Vector Voting, which is discussed in the following section.
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4.3.1 Iterative Vector Voting

Tensors are utilized for data representation with the purpose of perceptual or-

ganization [23]. According to the original 2D tensor framework, tensors can

represent two di�erent perceptual structures:

• Non-oriented input: point, which is represented by ball tensor

• Oriented input: curvel, which is represented by stick tensor

Tensors can feed each other by propagating their information, which has two

types:

• Orientation information, which is encoded by tensor shape

• Feature saliency, which is encoded by tensor size

While de�ning BO problem, it is realized that vectors, which are tensors of rank

1, are su�cient for data representation. BO information, whether region-based

or pixel-based, should consist of two di�erent types of information described as

follows:

• Direction: It de�nes the direction of the owner region of the boundary.

• Magnitude: It de�nes how strongly the region owns the border.

Basic data representation and low computation cost of voting are two signi�cant

features of TV. Besides, the other very important advantage of TV is the way

of creating voting �elds. Saliency decay function, which assigns the votes by

decreasing by distance and orientation, is the associate function used both by

ball and stick tensors. On the other hand, border ownership information does

not diminish on smooth borders unless sudden orientation changes occur. An

example for this situation is shown in Figure 4.9.
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Figure 4.9: Example - impact of orientation on border ownership

There exist two yellow-labeled borders in Figure 4.9, which are sequentially lo-

cated at the bottom-left and bottom-right corners. The �rst one, corresponding

to the front side of the house, is a smooth border where orientation is stable.

There exists a T-junction on this border, which is colored as black and located

between wood �oor, blue �oor and the house. The information is delivered to the

whole boundary without any loss as there exist neither a change on orientation

nor another strong information such as a junction. On the other hand, another

T-junction exists on the border of the second object, which is located on the

bottom-right side and colored black. BO information of T-junction cannot be

propagated to the whole border, since the border has many recesses and ledges,

i.e., there exist many orientation changes.

As the example above shows, BO information depends on orientation together

with distance. If there exists sudden orientation changes on the border, the

information decreases by distance. Thus, voting algorithm for BO must be

di�erent from the original tensor voting framework. In the original algorithm,

votes are aggregated by both distance and orientation, which is formulated as

follows:

DFTV (s, κ, σ) = e−
s2+cκ2

σ2 , (4.6)
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where s is the arc length between two tensors, κ is the curvature, c is a variable

to control the degree of decay with curvature and σ is the scale of voting, which

are denoted in Figure 4.10. In this �gure, the vote of a stick tensor located on

T1 to the location T2 is visualized. The vote is also a stick tensor with di�erent

orientation and magnitude. θ is the angle between the tangent of the osculating

circle at the voter tensor, as l de�nes the distance between T1 and T2.

Figure 4.10: Voting schema of stick tensor

To attenuate votes by orientation and distance together for IVV, the solution

is simple: the distance parameter is removed, the scale of voting is decreased

and voting is iterated. Thanks to such a solution, it is succeeded that distance

cannot show any e�ect on border ownership information without any orientation

change. Thus, decay function of IVV becomes:

DFIV V (κ, σ) = e−
cκ2

σ2 . (4.7)

We adapt the voting algorithm from stick voting algorithm of TV completely.

The reason for such an adaptation is that stick voting keeps the information of

curve continuation. It emits the maximum vote to the boundary curve which

is predicted to continue from these locations. Thus, our voting function, which

depends on both orientation and saliency decay function, is de�ned as follows:

V ote(θ, σ) = DFIV V [−sin(2θ)cos(2θ)]T [−sin(2θ)cos(2θ)]. (4.8)

Due to the change in voting functions, voting �elds of TV and IVV di�er. Dis-

tance is not considered in IVV, besides voting scale is smaller (Figure 4.11).
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(a) Stick tensor voting �eld
Source: [23]

(b) Vector voting �eld

Figure 4.11: Comparison of voting �elds of TV & IVV

Vectors are more compact versions of tensors, carrying less information. Thus,

their geometric representations are not di�erent than tensors, shown in Figure

4.12. In this �gure, vector V1 and its vote at V2, which is a vector too, are

visualized. Here orientations of both V1 and V2 show the same region, that

represents BO, but their saliences are di�erent due to vote attenuation.

Figure 4.12: Voting schema of a visual cue vector

De�ning meaningful visual data structures is an arguable issue. But in this

study, pixel-based approach is preferred with respect to two reasonable assump-

tions:

• As the scale of voting in Iterative Tensor Voting has to be smaller compared

to Tensor Voting due to its iterative nature, pixel is a better choice to

prevent vote loss.

• BO studies, mostly working on visual areas V1 and V2 [12, 13, 26, 41]

measure stimuli changes point-by-point on image, which are quite similar
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to the pixel-based approach of IVV.

Additionally, in IVV, there is no need for dense voting as the votes on the borders

are enough to assign the BO information. Under these assumptions and rules,

IVV algorithm is explained in details in the following section.

4.3.1.1 The Algorithm for IVV

The IVV algorithm consists of three main phases, which are visualized in the

sequence diagram of Figure 4.13.

• Cue Extraction

• Curvature Extraction

• Voting

The inputs of the algorithm, as usual, are the original image and relevant

boundary image. Initially, both visual cues and curvature map are extracted

from these. Visual cues are represented by vectors: their magnitudes show the

saliency of cue, i.e., the magnitude of border ownership information while their

directions show the owner region of the border pixel.

Figure 4.13: Iterative Vector Voting algorithm schema
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Simultaneously with cue extraction, curvature map is used for determining linels.

Linel is not a word in English, it is just inspired by curvel term. Although

curvel word does not have a formal de�nition either, it is �rstly declared by

Medioni [23] as "perfectly oriented point". Thus, curvel can be considered as

the smallest, meaningful piece of curve. In the light of this de�nition, linel is

de�ned as "largest smooth piece of line". Linels are simply extracted by cutting

the border from points having curvature of local maxima. An example image of

linels, which are colored di�erently, is shown in Figure 4.14.

Figure 4.14: A set of linels extracted from an image. Each linel is shown with a
di�erent color.

After visual cue vectors and curvels are extracted, the voting process comes next.

Visual cue vectors propagate their border ownership information iteratively to

each other, in the limits of pre-de�ned saliency decay function.

After the voting procedure, all border pixels have more reliable, enriched BO

information. However, as in the original TV framework, insigni�cant votes are

to be eliminated. For such purposes, thresholding via local maxima points are

used. These points are found as usual as follows:

x is local maxima for the function f if it succeeds:

• f ′(x) = 0

• f ′′(x) < 0
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Thresholding by local maxima means just holding the vectors of local maxima

and eliminating all others. Reason for such an elimination is to choose pixels

of salient features, to create an HVS-like model. It is argued that early vision

of HVS initially uses salient, attention-taking points instead of examining the

whole boundary [43].

Finally, after thresholding insigni�cant votes, the BO information is assigned to

each linel simply by addition of all cue vectors belonging to the linel. Resulting

vector of addition provides us the joint decision of salient cue vectors about

border ownership.

Details of each phase of the algorithm are provided below under the titles of

Curvature, Visual Cues and Voting.

• Curvature

The method for calculating curvature is simple: It �rst �ts a circle to the

origin point and its neighbors, then calculates the analytical curvature of

the origin this circle.

The distance of neighborhood, which determines the right and left neigh-

bors of the origin point, is learned through the observations. It is chosen

as 12 with respect to these observations, which means that there should be

12 pixels on the border, between the origin and the neighbors on which the

circle is placed. We de�ne the curvature as 1
r
where r is the circle radius.

In other words, the curvature on pointi equals to:

Ci =
1

r
,

where r is the radius of circle of points (pi−12, pi, pi+12), visualized in Fig-

ure 4.15
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Figure 4.15: Curvature on border

pi−12 and pi−12 are right and left neighbors of the origin point (pi). The

green-colored arrow shows the direction of the curvature at the same point.

• Visual Cues

The method consists of four pixel-based visual cues, one of which are

spatial and other three are spectral, respectively as follows:

� T-junctions

� Curvature

� Entropy

� Contrast

These visual cues are represented by vectors for each border pixel. In

Figure 4.16, how a visual cue is converted to a vector is visualized.

Figure 4.16: Pixel-based contrast tensor

Each visual cue has its own map, where pixels are assessed with their cue

values. The ratio of cue values on both sides of the border de�nes the

magnitude of cue vector, as the vector perpendicular to the border yields

the direction.
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Assume the map of contrast cue vectors are extracted. Contrast is an

important distinguishing visual cue, and the rule of BO related to contrast

can be simply de�ned as follows: Regions having stronger color, i.e. of

higher color intensity, are mostly the foreground, as Hoiem et al. [10] state.

In Figure 4.16, pixels lying on both sides of the border, which are colored

gray, have gray-scale colors of 40 and 10, respectively. These pixels are

brie�y called as neighbor pixels. With respect to pixel-based BO approach,

one of these neighbor pixels is the owner of the border pixel between them.

This border pixel, which is colored black, is called the seed pixel .

With respect to the contrast rule, the neighbor pixel with value 40 is the

owner of the seed pixel. Thus, the direction of the visual cue vector is

perpendicular to the border, towards the region of this neighbor pixel, as

shown in Figure 4.16. The magnitude on the other hand, which represents

the information saliency, is measured by the ratio of gray scale values.

Greater di�erence on cue values means higher saliency. The magnitude

is scaled down to the range [0-1]. It means that a ratio higher than 10

is considered a vector with magnitude of 1, corresponding to the most

reliable information.

Entropy cue follows the same way with the contrast cue. A region with

more textured structure is more probable owner of the border, compared

to the coarse, plain one [10, 36]. More textured structure means higher

energy, i.e., higher entropy, thus entropy of 3x3 neighborhood is calculated

for each neighbor pixel, as de�ned in Section 4.1. As T-junctions indicate

very salient BO information, they are represented by vectors of magnitude

1, which is the maximum. Thus, they transmit very reliable BO decision

to their neighbors.

As the curvature map is calculated earlier in the linel extraction procedure

(Figure 4.15), curvature values and directions are directly used from this

map when constructing curvature cue vectors. Lower-region cue can also

be considered among successful pixel-based cues. However, as it provides

discrete BO decision, lower region cue can not be utilized for voting.
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• Voting

Four separate cue vector maps are constructed by assigning four di�erent

cue vectors to every border pixels. After these maps are obtained, �ve step

voting algorithm are applied sequentially as follows:

1. Apply iterative voting algorithm for each cue map separately, each

with a speci�c number of iterations

2. Apply local maxima thresholding to these votes, to acquire the most

reliable updated votes

3. Calculate the vector sum on each linel for each cue

4. Apply majority voting on each linel to gather an associate decision

5. Apply second majority voting on BO decisions of linels to assign a

BO label to the whole boundary

All steps of IVV are visualized in Figure 4.17. In Figures 4.17a and 4.17b,

a sample image and its border mask are shown. In Figures 4.17c and 4.17d,

a map of contrast vectors and image of voted cue vectors are given respec-

tively. It is observed that the number of salient vectors arise around right

shoulder of the child, as there exist two T-junctions and many contrast

& entropy vectors exist and show the same region as the owner. Thresh-

olded, associate BO vectors are shown in Figure 4.17e whereas �nalized

BO decisions are provided with di�erent colors in Figure 4.17f. Correctly

assigned borders are colored green while wrongly labeled ones are shown

as red. Besides, the border with white color represents that no BO value

is assigned here in the ground truth, due to a visual con�ict.
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(a) A sample image (b) Border image

(c) Contrast cue map (d) Voted cue Map

(e) Associate revised cue map (f) Final BO labeling

Figure 4.17: Sample IVV scenario with the results
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CHAPTER 5

EXPERIMENTS

In this chapter, three separate experiments have been conducted:

• Evaluation of Visual Cues: In this phase, BO decision accuracies of

each visual cue are measured. Besides, their contributions to both super-

vised and unsupervised models are examined.

• Experiments of CRF-based model: In this phase, success rates of

CRF cues are provided and evaluated, both separately and totally.

• Experiments of IVV model: Results of four pixel-based IVV cues are

examined, both in di�erent combinations and as a whole.

In Appendix A, the BO dataset and web page are described in details. At last,

all results of each phase are provided in the following sections.

5.1 Dataset and Evaluation

The dataset used for the experiments is the largest of all [1]. Although the whole

dataset consists of 1003 images actually, 884 of these are utilized due to their

reliable drawings & labellings.

Other properties of the dataset:

• 440 indoor images
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• 404 outdoor images

• 18647 boundaries

Since the users could not have given BO decision of 544 borders, these borders

are excluded from the experiments.

Evaluation of results are handled through accuracy calculation except for T-

junctions. Accuracy (ACC) is the proportion of true results in the whole popu-

lation. Performance of T-junctions is measured as precision value, i.e. positive

predictive value (PPV), to provide a reasonable comparison with other cues. It

is because a border may not own a T-junction. ACC and PPV are computed as

follows:

ACC =
# of TP + TN

# of TP + TN + FP + FN
, (5.1)

PPV =
# of TP

# of TP + FP
, (5.2)

where TP , FP , TN , FN correspond to true positive, false positive, true negative

and false negative, respectively.

5.2 Evaluation of Visual Cues

In Table 5.1, average accuracies of region-based features estimating BO are

provided.

Size and lower-region cues provide accuracies close to random (50%). But their

contributions to the region-based model are much more than these values. Be-

sides, the most successful cue is T-junction as expected.
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Table 5.1: Region-based cue accuracies on BO

Visual Cue Performance Value Performance Type

T-junction 74,7 % PPV
Convexity 66,0 % ACC
Entropy 63,6 % ACC
Contrast 60,7 % ACC
Size 54,4 % ACC

Lower Region 52,0 % ACC

5.3 Experiments on the CRF-based model

In Table 5.2, the results of the CRF-based model are provided in di�erent com-

binations of cues. T-junctions are used with the purpose of prior labeling as this

cue is quite successful at assigning BO information alone and it is required that

a prior label is assigned before CRF update.

Table 5.2: Accuracies of cue combinations on CRF model

Visual Cue Accuracy

T-junction 36,7 %
T-junction + (Convexity-Entropy) 41,3 %
T-junction + (Contrast-Entropy) 57,1 %

T-junction + (Convexity-Entropy-Contrast) 59,4 %
T-junction + (Convexity-Entropy-Contrast-Size-Lower Region) 68 %

These results reveal two things: Size and lower-region cues are more successful

when utilized in a model with multiple cues rather than alone, as the perfor-

mance improvement of 9% shows. Secondly, how to combine cues is important

as di�erent combinations of convexity-entropy-contrast cues reveal. In this ta-

ble, success ratio of T-junction is given as accuracy, in contradiction to previous

results, to see the contributions of other cues clearly.

5.4 Experiments on the IVV model

In the IVV model, initially each cue gives a BO decision itself, then the decisions

of all cues are combined to reach a consensus for each linel via weighted majority
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voting. Thus it is easier to get separate accuracies for each cue of IVV.

IVV needs the parameter of "number of iterations" to be pre-de�ned, as a dis-

crete value. Through several experiments of di�erent iteration numbers with

each cue separately, results of which are given in Table 5.3), the ideal parame-

ters are found.

Table 5.3: Accuracies of separate cue contributions on the IVV model

Visual Cue / No of Iter. 2 3 4 5

T-junction 72,2% 73,1% 73% 71,8%
Curvature 57,4% 58% 56,7% 59,4%
Entropy 66,7% 71% 65,4% 58,3%
Contrast 64% 68% 64,2% 60,7%

Even a small loss is encountered after the 4th iteration for T-junction cue, iter-

ation number for this cue does not e�ect the performance. Iteration numbers

of contrast and entropy cues are chosen as 3, whereas it is 5 for the curvature

cue, as their accuracies are maximum at these numbers of iteration. Another

deduction from Table 5.3 is that cue accuracies of IVV are much higher than

region-based performances of same cues. Reason of such an improvement is that

salient features can be suppressed on region-based approach due to averaging

on whole border. Why it gives a better result when the number of iterations is

higher can be explained with the same situation while calculating curvature as

best results of curvature values are gathered within a neighborhood of 9. With

respect to the cue combination of these parameters, the IVV model has provided

a performance with a total accuracy of 77%.
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(a) First sample image (b) CRF result (c) IVV result

(d) Second sample image (e) CRF result of (f) IVV result

(g) Third sample image (h) CRF result (i) IVV result

Figure 5.1: Sample visual results of CRF and IVV models

Sample visual results for both CRF and TV models are provided in Figure

5.1. In the �rst column, original images are given. In the second and third

rows, CRF and IVV model results of these images are provided respectively.

Correctly labeled borders are colored green, while the wrong ones are colored

red in these result images. For the �rst image, IVV algorithm has provided

a better result while in the second image one, CRF model is more successful.

Such a discrepancy of success arises from the approach. CRF-model becomes

more successful at the images showing more tendency to region-based cues such

as area. Lastly in the third image, the results of both algorithms are quite

successful due to high number of T-junctions.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

This thesis propose two new models for the border ownership (BO) problem by

utilizing a supervised and an unsupervised model on a new, comprehensive BO

dataset using Gestalt cues such as size, convexity, entropy, contrast, lower-region

and T-junctions.

There are just two studies of BO to compare results against, which show results

above the average and work on real images. The �rst study is the study of Ren,

Fowlkes and Malik, in which shapemes are de�ned as image-speci�c cues [35].

Results of the study is 72% accuracy for human-marked segmentation set while

64% accuracy is obtained for the dataset of which segmentations are automat-

ically generated curves. The results of the thesis are much better, although a

precise comparison is impossible to make as the datasets are di�erent.

The other one is the study of Leichter et al. [19], in which a 2.1D model is

applied using T & L junctions, convexity, lower region, fold/cut and parallelism

as cues. 2.1D model provides ordinal depths of regions, which is a great prior for

BO assignment. This study brie�y models the PDF ordinal depth information

and maximizes it by a CRF model utilizing six di�erent cues. Its performance

is measured as 82,8% accuracy, which is the highest score so far. But a disad-

vantage of this study is that the whole dataset is outdoor images. 2.1D model

suits better to outdoor data due to its characteristics, thus same success is not

expected for indoor imagery.

Although both CRF and IVV models have produced promising and successful
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results, there are more things to consider as the future work:

• All visual cues have the same amount of impact on the BO decision. It

seems logical that an auto-weighting algorithm should work; however, there

does not exist any study in the literature which defends or opposes this

aspect.

• The scale of voting and iteration numbers are not assigned automatically.

They are chosen by assumptions and observations.

• IVV is a pixel-based approach, thus even very small inaccurate drawings

of borders cause great di�erences in results. There exist some solutions

such as selecting further neighbors instead of neighbors with distance 1,

but this is not a reliable solution.

• Cue combinations are handled with respect to the results gathered. Here

in this procedure, physiological studies and experiments can be utilized by

measuring their impacts on HVS and constructing a reasonable heuristic.
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APPENDIX A

BORDER OWNERSHIP LABELING PROGRAM &

DATASET

Due to the insu�cient number or low quality of data, a new BO dataset is

required. The project team (Asst. Prof. Sinan Kalkan, Mehmet Akif Akku³,

Gaye Topuz and Bu§ra Özkan) initially created an on-line annotation tool, with

a user-friendly GUI and clear instruction set [1]. Via the annotation tool, a

database has been generated which consists of 1003 images with its correspond-

ing labeled borders.

The database consists of 503 indoor and 500 outdoor images in JPEG format.

All of the outdoor images are taken from BSDS [7]. They all have resolution of

321x481. For the indoor dataset, 219 images are obtained from LHI database

[48] and the other 284 ones are gathered from various image-sharing websites.

The width for indoor images is same for all, which equals to 800 pixels. The

height varies from 443 to 1343 pixels.

Annotated GT data was available with the LHI and BSDS datasets, as they

are necessary for gathering the regions and their borders. For the other images,

GT data is extracted through segmentation by hand. In continuation of the

segmentation process, image borders are extracted, and the ones smaller than

4% of the length of image diagonal are eliminated. The simple goal for the

attendant is to click either blue or red area on the GUI considering it as the

owner of the white border between these two.

Usage scenario of the on-line annotation tool is simple and stepwise as the neces-

sary information is provided before labeling. After entering the web site, initially
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a register/login page appears as in Figure A.1. While registering, the attendant

must also share the age, education level and gender information (Figure A.2)

as any dependency analysis may be held with respect to these parameters.

Figure A.1: Border ownership labeling program login/register page

Figure A.2: Border ownership labeling program register page

After login procedure, the take-tour page is the next, where the test participant

is informed by animations about BO problem and the usage of website (Figure

A.3). Later on, before the labeling process, the user is tested to learn whether

he/she understood BO problem by using a simple arti�cial data on the tutorial

page (Figure A.4). After each correct labeling, the user is informed about why

the border belongs to the area selected. The tutorial is a must before labeling

starts. Unless the participant labels all borders correctly, he/she is not able to

pass the tutorial and start labeling.
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Figure A.3: Border ownership labeling program take-tour page

Figure A.4: Border ownership labeling program tutorial page

After tutorial part is completed successfully, labeling part starts. Two visual ar-

eas that causes occlusion are colored transparently as red and blue, respectively

(Figure A.5). In case the test participant is not able to guess which region is
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the owner of the border, he/she can pass the image by clicking "I am not sure"

button. Besides, the participant can change his BO decision by clicking "Undo"

button and disable the colored border layer by clicking "Drawing on/o�" button.

Figure A.5: Border ownership labeling program labeling page

For the data representation of borders & regions, JSON data type is used. In

addition to the images, mat �les, an SQL �le and a read-me �le are provided.

Each mat �le obtains the information of related image with its regions. SQL

�le consists of all labeling database. The read-me �le provides all information

to utilize the database.

In conclusion, the dataset consists of various kinds of real, indoor & outdoor

images, with their correctly labeled BO GT masks, thanks to our on-line anno-

tation tool. It is expected that both the tool and dataset will contribute to the

literature more as the number of studies about BO problem increases.
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